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1 Preliminaries

Install LTBeamN available at https://www.cticm.com/logiciel/ltbeamn/

For the jupyter notebook do the following steps:

1. Install anaconda distribution available at https://www.anaconda.com/distribution/ ;
2. Go to Anaconda prompt, on Windows, or the terminal, on MacOS/Linux;
3. Put yourself in the directory where you have the notebook by typing “cd” followed by the

path;
4. Type “jupyter notebook”

Import Python libraries

[1]: import numpy as np # Numerical library
import pandas as pd # Data analysis library
import matplotlib.pyplot as plt # Plotting library

Function Definitions

[2]: def singlySymmetricGeoProp(h,bf1,tf1,bf2,tf2,tw):
"""This function calculates the geometric properties of singly symmetric␣

↪→cross-sections"""

hw=h-tf1-tf2

A=(bf2*tf2+tw*hw+bf1*tf1)

zG=(bf2*tf2*tf2/2.+tw*hw*(hw/2.+tf2)+bf1*tf1*(h-tf1/2.))/
↪→(bf2*tf2+tw*hw+bf1*tf1)

ht=zG-tf2/2.
hc=h-tf1/2.-zG

# Shear center position - cf. slide 39 of course
if (bf1**3*tf1-bf2**3*tf2)==0:

zc=0.
else:

zc = (bf1**3*hc*tf1-bf2**3*ht*tf2)/(bf1**3*tf1-bf2**3*tf2)

1



Iw = (hc+ht)**2*bf1**3*tf1*bf2**3*tf2/(12*(bf1**3*tf1+bf2**3*tf2)) #␣
↪→Warping constant - cf. slide 39 of course

K = 1/3.*(bf1*tf1**3+bf2*tf2**3+(hc+ht)*tw**3) # Torsional - cf. slide 39␣
↪→of course

# Strong Axis moment of inertia
Iy= bf1*tf1**3/12.+bf1*tf1*hc**2 +\

tw*hw**3/12.+hw*tw*(zG-(hw/2.+tf2/2.))**2+\
bf1*tf1**3/12.+bf1*tf1*hc**2

# Weak axis moment of inertia
Iz= bf1**3*tf1/12.+\

tw**3*hw/12.+\
bf1**3*tf1/12.

# Sectorial characteristic - cf. slide 39 of course
beta = zc+1/(2.*Iy)*(ht*(bf2**3*tf2/12.+bf2*tf2*ht**2+ht**3*tw/4.)-\

hc*(bf1**3*tf1/12.+bf1*tf1*ht**2+hc**3*tw/4.))

return zc,A,Iy,Iz,K,Iw,beta

Clarke and Hill’s critical moment:

Mcr =
C1π
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Iz

(
GKk2φL

2

π2EIω
+ 1

)
+ C2za + C3β

 (1)

[3]: def clarkHill_criticalMoment(E, G, Iz, K, Iw, beta, za, L,
kphi=1.0,kv=1.0, C_1=1.0,C_2=1.0,C_3=1.0):

"""
This function returns the critical moment as proposed by Clark and Hill -␣

↪→cf. slide 42 of LTB course

"""

M_cr=C_1*np.pi**2*E*Iz/(kv*kphi*L**2)*(\
np.sqrt((C_2*za+C_3*beta)**2+Iw/Iz*(G*K*kphi**2*L**2/(np.

↪→pi**2*E*Iw)+1))+\
(C_2*za+C_3*beta))

return M_cr
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2 Units and material properties

[4]: E=210e3 #N/mm2
nu=0.3 # Poisson's ratio
fy=235 #N/mm2

G=E/(2*(1+nu))

3 Geometric properties

3.1 Bridge grider(BG)

Cross-section

[5]: #Inputs in mm

h=1070.

bf1=450.
tf1=35.

bf2=450.
tf2=35.

tw=20.

zc_BG, A_BG, Iy_BG, Iz_BG, K_BG, Iw_BG, beta_BG =␣
↪→singlySymmetricGeoProp(h,bf1,tf1,bf2,tf2,tw)

print('zc_BG = ',round(zc_BG,2),' mm')
print('A_BG = ',round(A_BG,2),' mm^4')
print('Iy_BG = ',round(Iy_BG,2),' mm^4')
print('Iz_BG = ',round(Iz_BG,2),' mm^4')
print('K_BG = ',round(K_BG,2),' mm^4')
print('Iw_BG = ',round(Iw_BG,2),' mm^6')
print('beta_BG = ',round(beta_BG,2),' mm')

zc_BG = 0.0 mm
A_BG = 51500.0 mm^4
Iy_BG = 10111904166.67 mm^4
Iz_BG = 532229166.67 mm^4
K_BG = 15622500.0 mm^4
Iw_BG = 142355759765625.0 mm^6
beta_BG = 0.0 mm

Element characteristics
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[6]: L_BG=24000. #mm

3.2 Transverse beam (TB)

HEB300 - Cross-section

[7]: A_TB= 149.1e2 #mm2
Iy_TB= 25160e4 #mm4
Iz_TB= 8562e4 #mm4

K_TB= 189.1e4 #mm4
Iw_TB= 1687e9 #mm6

Element characteristics

[8]: L_TB=8000. #mm

4 LTBeamN analysis

In this section we perform some analysis for the LTBeamN software.

Firstly, we shall see how to setup some basic properties for the project. These include:

1. Defining the beam’s length;
2. Defining the beam’s material;
3. Defining the beam’s cross-section.

After, we shall analyze the sensitivity of the critical moment depending on:

1. Boundary conditions;
2. Loading type;
3. Load position;
4. Lateral restraints;
5. Effect of axial load;

We shall build a table in order to keep track of our analyses:

[9]: analysisTable_header=['Case','Boundary Cond.','Loading','Restraints','Load␣
↪→Position','Axial Load',

'M_cr_LTBeamN','M_cr_ClarkHill']

analysisTable=pd.DataFrame(columns=analysisTable_header)

Furthermore, when interpreting the results from LTBeamN we should always bear in mind that the
program is, by default, computing a multiple of whatever loading is applied to the beam. In other
words, say that you have a distributed load q applied to the beam, what the program is computing
is how many times do I have to multiply q in order to lose stability in the member:

4



qcr = µcrq (2)

In so far that the loading q produces a maximum moment of Mmax,q then the critical moment in
this situation will be,

Mcr = µcrMmax,q (3)

4.1 Simply supported beam subjected to distributed load at shear center, warp-
ing free at ends - Case 1

[10]: za=0.0 # loading applied at shear center

L_d=L_BG # Buckling length

caseCounter=1

Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=1.0,kv=1.0,
C_1=1.13,C_2=0.46,C_3=0.53)/1e6 #kN.m

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','No Inter. Lateral␣
↪→Restraint','Shear Center',

0.0,
2058.,
round(Mcr_CH)]

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[10]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill
0 Shear Center 0.0 2058.0 2083.0

4.2 Simply supported beam subjected to distributed load outside shear center,
warping free at ends - Case 2

[11]: za=355.0 # mm

L_d=L_BG # Buckling length
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caseCounter+=1

Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=1.0,kv=1.0,
C_1=1.13,C_2=0.46,C_3=0.53)/1e6 #kN.m

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','No Lateral␣
↪→Restraint','za=355mm',

0.0,
2438,
round(Mcr_CH)]

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[11]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint
0 2 Simple, Warp. Free Dist. Load No Lateral Restraint

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill
0 Shear Center 0.0 2058.0 2083.0
0 za=355mm 0.0 2438.0 2466.0

4.3 Simply supported beam subjected to distributed load outside shear center,
warping restrained at ends - Case 3

[12]: za=355.0 # mm

L_d=L_BG # Buckling length

caseCounter+=1

Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=0.5,kv=1.0,
C_1=1.13,C_2=0.46,C_3=0.53)/1e6 #kN.m

analysisRow=[caseCounter,'Simple, Warp. Fixed','Dist. Load','No Lateral␣
↪→Restraint','za=355mm',

0.0,
3410,
round(Mcr_CH)]
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analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[12]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint
0 2 Simple, Warp. Free Dist. Load No Lateral Restraint
0 3 Simple, Warp. Fixed Dist. Load No Lateral Restraint

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill
0 Shear Center 0.0 2058.0 2083.0
0 za=355mm 0.0 2438.0 2466.0
0 za=355mm 0.0 3410.0 3639.0

4.4 Simply supported beam subjected to distributed load outside shear center,
warping free at ends and restraints, lateral displacements and rotations
fixed at 8 meter intervals - Case 4

[13]: za=355 # mm

L_d=8000 # Buckling length

caseCounter+=1

Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=1.0,kv=1.0,
C_1=1.00, ## <----- more like uniform␣

↪→moment than a parabolic distribution
C_2=0.46,C_3=0.53)/1e6 #kN.m

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','@8m lateral Fixed␣
↪→and rotation Fixed','za=355mm',

0.0,
13892,
round(Mcr_CH)]

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[13]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint
0 2 Simple, Warp. Free Dist. Load No Lateral Restraint

7



0 3 Simple, Warp. Fixed Dist. Load No Lateral Restraint
0 4 Simple, Warp. Free Dist. Load @8m lateral Fixed and rotation Fixed

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill
0 Shear Center 0.0 2058.0 2083.0
0 za=355mm 0.0 2438.0 2466.0
0 za=355mm 0.0 3410.0 3639.0
0 za=355mm 0.0 13892.0 13261.0

Let’s see how well we are doing with this approximation by defining the Clark Hill approximation
error as

ErrorCH =
Mcr,CH −Mcr,LTBeam

Mcr,LTBeam
∗ 100 (4)

[14]: analysisTable['Clark Hill Error pc.']=np.
↪→round((analysisTable['M_cr_ClarkHill']-analysisTable['M_cr_LTBeamN'])\

/
↪→analysisTable['M_cr_LTBeamN']*100. ,2)

analysisTable_header= analysisTable_header+['Clark Hill Error pc.']

analysisTable

[14]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint
0 2 Simple, Warp. Free Dist. Load No Lateral Restraint
0 3 Simple, Warp. Fixed Dist. Load No Lateral Restraint
0 4 Simple, Warp. Free Dist. Load @8m lateral Fixed and rotation Fixed

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill \
0 Shear Center 0.0 2058.0 2083.0
0 za=355mm 0.0 2438.0 2466.0
0 za=355mm 0.0 3410.0 3639.0
0 za=355mm 0.0 13892.0 13261.0

Clark Hill Error pc.
0 1.21
0 1.15
0 6.72
0 -4.54

or in graphical form:

[15]: plt.bar(analysisTable['Case'],analysisTable['Clark Hill Error pc.'],width=0.
↪→75,color='0.5')

plt.xticks(np.array(analysisTable['Case'],dtype=int))
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plt.xlabel('Case')
plt.ylabel(r'$Error_{CH}$ - (%)')
plt.tight_layout()

4.5 Simply supported beam subjected to distributed load outside shear center,
warping free at ends and restraints, lateral displacements fixed and flexible
rotations at 8 meter intervals - Case 5

Now, because the bridge girders depicted in the problem set are connected between each other,
they share a common global buckling mode. Since they buckle together, the HEB300 provides
some rotational stiffness to the bridge girder, but it’s not completely fixed. This situation is very
hard to take into account in calculating the critical moment in an approximate way with the Clark-
Hill formula. To use this formula we would be forced to make simplifications (like the rotationally
fixed one) which could to lead an overestimation of our critical moment. Let’s see by how much.
First let us estimate the rotational stiffness the HEB300 provides and then plug it in LTBeam to
obtain a more refined critical moment.

The rotational stiffness of a simply supported beam loaded in pure bending by moments at the
extremities can be shown to be equal to:

Kθ =
2EI

L
(5)
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[16]: 2*E*Iy_TB/L_TB*1e-6 #kN.m/rad

[16]: 13209.0

[17]: za=355 # mm

L_d=8000 # Buckling length

caseCounter+=1

Mcr_CH='-'

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','@8m lateral Fixed␣
↪→and rotation flex.','za=355mm',

0.0,
13721,
Mcr_CH,
'-'] # <---- no error calculation

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[17]: Case Boundary Cond. Loading Restraints \
0 1 Simple, Warp. Free Dist. Load No Inter. Lateral Restraint
0 2 Simple, Warp. Free Dist. Load No Lateral Restraint
0 3 Simple, Warp. Fixed Dist. Load No Lateral Restraint
0 4 Simple, Warp. Free Dist. Load @8m lateral Fixed and rotation Fixed
0 5 Simple, Warp. Free Dist. Load @8m lateral Fixed and rotation flex.

Load Position Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc.
0 Shear Center 0.0 2058.0 2083 1.21
0 za=355mm 0.0 2438.0 2466 1.15
0 za=355mm 0.0 3410.0 3639 6.72
0 za=355mm 0.0 13892.0 13261 -4.54
0 za=355mm 0.0 13721.0 - -

4.6 Simply supported beam subjected to distributed load outside shear center,
warping free at ends and restraints, lateral displacements fixed throughout
the length and flexible rotations at 8 meter intervals - Case 6

[18]: za=355 # mm

L_d=8000 # Buckling length
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caseCounter+=1

Mcr_CH='-'

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','Laterally Fixed␣
↪→throughout and rotation flex. @8m','za=355mm',

0.0,
15793,
Mcr_CH,
'-'] # <---- no CH error calculation

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[18]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc.
0 0.0 2058.0 2083 1.21
0 0.0 2438.0 2466 1.15
0 0.0 3410.0 3639 6.72
0 0.0 13892.0 13261 -4.54
0 0.0 13721.0 - -
0 0.0 15793.0 - -
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4.7 Simply supported beam subjected to distributed load outside shear center,
warping free at ends and restraints, lateral displacements fixed throughout
the length and flexible rotations at 8 meter intervals, with axial load - Case
7

Now, here we have an ambiguous situation: what precisely do we mean by the buckling
multiplier(µcr) when we have two independent load types, one producing flexural moments, and
another axial load?

As mentioned previously, by default LTBeam multiplies whatever loading exists in the beam
(MEd, NEd) proportionally. Let’s call this option 1:

1.
Mcr = µcrMEd,max ; Ncr = µcrNEd,max (6)

Another alternative, say option 2, would be to hold the axial load constant while increasing the
moment until stability in the system is lost.

2.
Mcr = µcrMEd,max ; Ncr = NEd,max (7)

Yet another, option 3, would be the converse of option 2, that is to hold the moment constant while
increasing the axial load until stability in the system is lost.

3.
Mcr = MEd,max ; Ncr = µcrNEd,max (8)

Which one you choose will depend on the load case, and hence the question, you want to solve.

Let’s imagine a situation in which insufficient space was left at the extremities for the bridge to
expand. In this situation, an increase in temperature will submit our cross-section to axial load.
An estimation of this axial load can be made by:

N = EAα∆T (9)

[19]: Delta_T=20 # °C
alpha=1e-5 # Coefficient of thermal expansion m/(m.°C)

E*A_BG*alpha*Delta_T*1e-3 #kN

[19]: 2163.0000000000005

Here I would be mostly interested in how much heavy traffic can the bridge girder support, in the
presence of a 20°C temperature rise, before losing its stability.

[20]: za=355 # mm

L_d=8000 # Buckling length

caseCounter+=1
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Mcr_CH='-'

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','Laterally Fixed␣
↪→throughout and rotation flex. @8m','za=355mm',

'Constant 2160',
14471,
Mcr_CH,
'-'] # <---- no CH error calculation

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[20]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc.
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
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4.8 Simply supported beam subjected to distributed load outside shear center,
warping free at ends and restraints, lateral displacements fixed throughout
the length and flexible rotations at 8 meter intervals, with variable axial
load - Case 8

Another question, for example, I would be interested in asking is: for a given traffic volume (fixed
vertical load), how fast can the traffic go so that if all vehicles brake at the same time, the bridge
girder will lose its stability? Since vehicle speed is directly related to its braking force, this is
equivalent to scaling the braking forces on the bridge girder until the girder buckles.

[21]: za=355 # mm

L_d=8000 # Buckling length

caseCounter+=1

Mcr_CH='-'

analysisRow=[caseCounter,'Simple, Warp. Free','Dist. Load','Laterally Fixed␣
↪→throughout and rotation flex. @8m','za=355mm',

'Variable -30828',
2336,
Mcr_CH,
'-'] # <---- no CH error calculation

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[21]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
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0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc.
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -

[22]: analysisTable['Change Base pc.']=np.
↪→round((analysisTable['M_cr_LTBeamN']-analysisTable['M_cr_LTBeamN'].iloc[0])\

/analysisTable['M_cr_LTBeamN'].
↪→iloc[0]*100. ,2)

analysisTable_header= analysisTable_header+['Change Base pc.']

analysisTable

[22]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc. \
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
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0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -

Change Base pc.
0 0.00
0 18.46
0 65.69
0 575.02
0 566.72
0 667.40
0 603.16
0 13.51

[23]: plt.bar(analysisTable['Case'],analysisTable['Change Base pc.'],width=0.
↪→75,color='0.5')

plt.xticks(np.array(analysisTable['Case'],dtype=int))
plt.xlabel('Case')
plt.ylabel(r'Change in LTBeam $M_{cr}$ from base case - (%)')
plt.tight_layout()
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4.9 Continuous beam on three supports, loaded from the top flange by a dis-
tributed load, intermediately braced @4m laterally and rotationally - Case
9

[24]: caseCounter+=1

za=-535.

L_d=4000.

psi=40/-180

C_1_psi=min(1.75-1.05*psi+0.3*psi**2,2.35) #Salvadori/SIA263

Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=1.0,kv=1.0,
C_1=C_1_psi,C_2=0.46,C_3=0.53)/1e6 #kN.m; Be␣

↪→carefull with C_2...

Mcr_LTBeam=86694.

Error_CH=round((Mcr_CH-Mcr_LTBeam)/Mcr_LTBeam*100.,2)

analysisRow=[caseCounter,'Cont., 3 Supp. , Warp. Free','Dist. Load','Laterally␣
↪→and rotationally fixed @4m','za=-535mm',

0.0,
Mcr_LTBeam,
Mcr_CH,
Error_CH,
'N.A.'] # <---- Not applicable

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[24]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load
0 9 Cont., 3 Supp. , Warp. Free Dist. Load
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Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally and rotationally fixed @4m za=-535mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc. \
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -
0 0 86694.0 47169.9 -45.59

Change Base pc.
0 0
0 18.46
0 65.69
0 575.02
0 566.72
0 667.4
0 603.16
0 13.51
0 N.A.

4.10 Continuous beam on three supports, loaded from the top flange by a point
load, intermediately braced @4m laterally and rotationally - Case 10

[25]: caseCounter+=1

za=-535.

L_d=4000.

psi=133.33/-400.0

C_1_psi=min(1.75-1.05*psi+0.3*psi**2,2.35) #Salvadori/SIA263
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Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za, L_d,
kphi=1.0,kv=1.0,
C_1=C_1_psi,C_2=0.46,C_3=0.53)/1e6 #kN.m; Be␣

↪→carefull with C_2...
Mcr_LTBeam=97401.

Error_CH=round((Mcr_CH-Mcr_LTBeam)/Mcr_LTBeam*100.,2)

analysisRow=[caseCounter,'Cont., 3 Supp. , Warp. Free','Point Load','Laterally␣
↪→and rotationally fixed @4m','za=-535mm',

0.0,
Mcr_LTBeam,
Mcr_CH,
Error_CH,
'N.A.'] # <---- Not applicable

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[25]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load
0 9 Cont., 3 Supp. , Warp. Free Dist. Load
0 10 Cont., 3 Supp. , Warp. Free Point Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally and rotationally fixed @4m za=-535mm
0 Laterally and rotationally fixed @4m za=-535mm

19



Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc. \
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -
0 0 86694.0 47169.9 -45.59
0 0 97401.0 50361 -48.3

Change Base pc.
0 0
0 18.46
0 65.69
0 575.02
0 566.72
0 667.4
0 603.16
0 13.51
0 N.A.
0 N.A.

4.11 Continuous beam on three supports, loaded from the bottom flange by a
point load, intermediately braced @4m laterally and rotationally - Case
11

[26]: caseCounter+=1

za=535.

L_d=4000.

psi=133.33/-400.0

C_1_psi=min(1.75-1.05*psi+0.3*psi**2,2.35) #Salvadori/SIA263

Mcr_CH=Mcr_CH=clarkHill_criticalMoment(E, G, Iz_BG, K_BG, Iw_BG, beta_BG, za,␣
↪→L_d,

kphi=1.0,kv=1.0,
C_1=C_1_psi,C_2=0.0,C_3=0.53)/1e6 #kN.m; C_2=0␣

↪→--> load position does not matter

Mcr_LTBeam=97401.
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Error_CH=round((Mcr_CH-Mcr_LTBeam)/Mcr_LTBeam*100.,2)

analysisRow=[caseCounter,'Cont., 3 Supp. , Warp. Free','Point Load','Laterally␣
↪→and rotationally fixed @4m','za=535mm',

0.0,
Mcr_LTBeam,
Mcr_CH,
Error_CH,
'N.A.'] # <---- Not applicable

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[26]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load
0 9 Cont., 3 Supp. , Warp. Free Dist. Load
0 10 Cont., 3 Supp. , Warp. Free Point Load
0 11 Cont., 3 Supp. , Warp. Free Point Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally and rotationally fixed @4m za=-535mm
0 Laterally and rotationally fixed @4m za=-535mm
0 Laterally and rotationally fixed @4m za=535mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc. \
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
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0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -
0 0 86694.0 47169.9 -45.59
0 0 97401.0 50361 -48.3
0 0 97401.0 78625.7 -19.28

Change Base pc.
0 0
0 18.46
0 65.69
0 575.02
0 566.72
0 667.4
0 603.16
0 13.51
0 N.A.
0 N.A.
0 N.A.

4.12 Continuous beam on three supports, loaded from the bottom flange by a
point load, intermediately braced @4m laterally and rotationally, and the
top flange braced throughout - Case 12

[27]: caseCounter+=1

za=-535.

L_d=4000.

psi=133.33/-400.0

C_1_psi=min(1.75-1.05*psi+0.3*psi**2,2.35) #Salvadori/SIA263

Mcr_CH='-' # Out of scope of CH

Mcr_LTBeam=111048.

Error_CH='-' # out of scope of CH

analysisRow=[caseCounter,'Cont., 3 Supp. , Warp. Free','Point Load','Laterally␣
↪→and rotationally fixed @4m, Top flange throughout','za=-535mm',

0.0,
Mcr_LTBeam,
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Mcr_CH,
Error_CH,
'N.A.'] # <---- Not applicable

analysisTable=analysisTable.append(pd.
↪→DataFrame([analysisRow],columns=analysisTable_header))

analysisTable

[27]: Case Boundary Cond. Loading \
0 1 Simple, Warp. Free Dist. Load
0 2 Simple, Warp. Free Dist. Load
0 3 Simple, Warp. Fixed Dist. Load
0 4 Simple, Warp. Free Dist. Load
0 5 Simple, Warp. Free Dist. Load
0 6 Simple, Warp. Free Dist. Load
0 7 Simple, Warp. Free Dist. Load
0 8 Simple, Warp. Free Dist. Load
0 9 Cont., 3 Supp. , Warp. Free Dist. Load
0 10 Cont., 3 Supp. , Warp. Free Point Load
0 11 Cont., 3 Supp. , Warp. Free Point Load
0 12 Cont., 3 Supp. , Warp. Free Point Load

Restraints Load Position \
0 No Inter. Lateral Restraint Shear Center
0 No Lateral Restraint za=355mm
0 No Lateral Restraint za=355mm
0 @8m lateral Fixed and rotation Fixed za=355mm
0 @8m lateral Fixed and rotation flex. za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally Fixed throughout and rotation flex. @8m za=355mm
0 Laterally and rotationally fixed @4m za=-535mm
0 Laterally and rotationally fixed @4m za=-535mm
0 Laterally and rotationally fixed @4m za=535mm
0 Laterally and rotationally fixed @4m, Top flan… za=-535mm

Axial Load M_cr_LTBeamN M_cr_ClarkHill Clark Hill Error pc. \
0 0 2058.0 2083 1.21
0 0 2438.0 2466 1.15
0 0 3410.0 3639 6.72
0 0 13892.0 13261 -4.54
0 0 13721.0 - -
0 0 15793.0 - -
0 Constant 2160 14471.0 - -
0 Variable -30828 2336.0 - -
0 0 86694.0 47169.9 -45.59
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0 0 97401.0 50361 -48.3
0 0 97401.0 78625.7 -19.28
0 0 111048.0 - -

Change Base pc.
0 0
0 18.46
0 65.69
0 575.02
0 566.72
0 667.4
0 603.16
0 13.51
0 N.A.
0 N.A.
0 N.A.
0 N.A.

5 Some afterthoughts

5.1 Bending-moment and axial-load interaction in code verifications (SIA263)

Although LTBeamN allows us to calculate in a refined way the critical multiplier(µcr) associated
with a moment and an axial load acting concurrently in our element (e.g. option 1, from be-
fore), code verifications impose a different approach. The code axial-load and moment interaction
equation tries to simplify things by considering an approximate the interaction formula. Roughly
reproducing the SIA263, the interaction formula(§5.1.9.1) looks like this:

NEd

NK,Rd
+

1

1− NEd
Ncr

· ωMEd

MRd
≤ 1.0 (10)

with ω a factor to take into account the moment distribution in the element(not to be confused
with the normalized sectorial coordinate in the last lecture); MRd the resisting moment, which
should be MD,Rd = χDMRd if lateral torsional buckling is not restrained; NK,Rd the axial resistance
accounting for lateral buckling; Ncr the critical buckling load; and 1/(1−NEd/Ncr) an amplification
factor for 2nd order moments.

Adding to the complexity of the interaction axial load and bending moment interaction are other
factors, like the distribution of residual stresses in the cross section, and imperfections in the
member. Because of this complexity, the interaction formula is conservative in its shape, when
one thinks of the other alternatives that could be considered. Here, however, is where experiments
guide the decision and the data shows that a linear relation is the most appropriate one.

[28]: rightSide=np.linspace(0,1,100)
leftSide_SIA263=1-rightSide
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leftSide_alternative=(1-rightSide**2)**0.5 #Quadratic interaction between left␣
↪→and right terms

plt.plot(rightSide,leftSide_SIA263,color='0.0',label='SIA263')
plt.plot(rightSide,leftSide_alternative,color='0.5',ls='--',label='Alternative ?
↪→')

plt.xlim(0,1)
plt.ylim(0,1)
plt.xlabel(r'$\frac{1}{1-\frac{N_{Ed}}{N_{cr}}}\cdot\frac{\omega␣
↪→M_{Ed}}{M_{Rd}}$',fontsize=20)

plt.ylabel(r'$\frac{N_{Ed}}{N_{K,Rd}}$',fontsize=20),
plt.legend(loc='upper right')
plt.tight_layout()

Aside from the shape of the interaction, the fact that we use an empirical formula to calculate
the resistance of the interaction, gives way to multiple interpretations of how this formula should
be used. An interesting discussion on this fact can be found in the TGC-10, §6.3.2 . There, it
is recommended that, not only should the critical axial load and critical lateral torsional buckling
loads be calculated independently of each other, but also that the moment diagram for the LTB
calculation should be uniform. Paraphrasing what is stated in the TGC, two equations should be
used to verify for the interaction:
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NEd

NK,Rd
+

1

1− NEd
Ncr

·
ωMEd,max

MD,Rd,min
≤ 1.0 (11)

MEd,max ≤ MD,Rd(C1) (12)

where, MD,Rd,min = MD,Rd(C1 = 1.0).

So, in conclusion, what should we use LTBeamN for:

1. Stick to cases without axial load interaction. If you end up using LTBeamN in these situations,
always make the most conservative of assumptions (e.g., uniform moment), and calculate the
critical axial load and moment independently of each other;

2. Use LTBeamN whenever you have cases that you need to calculate the moment strength
with the LTB reduction factor, when either the boundary conditions, load position, load
distribution, and lateral restraints, start falling outside the scope of the simplified formulas.
In short, if you start feeling uncomfortable about the assumptions you are using for C1,C2

and C3, then you should move to LTBeamN.

χD =
1

ΦD +
√
Φ2
D − λ̄2

D

≤ 1 ; ΦD = 0.5
(
1 + αD

(
λ̄D − 0.4

)
+ λ̄2

D

)
; λ̄D =

√
MRd

Mcr
(13)

5.2 Python comments

The Python Pandas library gives us, as a bonus, the possibility of exporting the table we just made
in LaTeX form:

[29]: print(analysisTable.to_latex(index=False))

\begin{tabular}{llllllrlll}
\toprule
Case & Boundary Cond. & Loading &
Restraints & Load Position & Axial Load & M\_cr\_LTBeamN &
M\_cr\_ClarkHill & Clark Hill Error pc. & Change Base pc. \\
\midrule

1 & Simple, Warp. Free & Dist. Load & No
Inter. Lateral Restraint & Shear Center & 0 & 2058.0 &
2083 & 1.21 & 0 \\

2 & Simple, Warp. Free & Dist. Load &
No Lateral Restraint & za=355mm & 0 & 2438.0 &
2466 & 1.15 & 18.46 \\

3 & Simple, Warp. Fixed & Dist. Load &
No Lateral Restraint & za=355mm & 0 & 3410.0 &
3639 & 6.72 & 65.69 \\

4 & Simple, Warp. Free & Dist. Load & @8m lateral
Fixed and rotation Fixed & za=355mm & 0 & 13892.0 &
13261 & -4.54 & 575.02 \\
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5 & Simple, Warp. Free & Dist. Load & @8m lateral
Fixed and rotation flex. & za=355mm & 0 & 13721.0 &
- & - & 566.72 \\

6 & Simple, Warp. Free & Dist. Load & Laterally Fixed throughout
and rotation flex. @8m & za=355mm & 0 & 15793.0 &
- & - & 667.4 \\

7 & Simple, Warp. Free & Dist. Load & Laterally Fixed throughout
and rotation flex. @8m & za=355mm & Constant 2160 & 14471.0 &
- & - & 603.16 \\

8 & Simple, Warp. Free & Dist. Load & Laterally Fixed throughout
and rotation flex. @8m & za=355mm & Variable -30828 & 2336.0 &
- & - & 13.51 \\

9 & Cont., 3 Supp. , Warp. Free & Dist. Load & Laterally and
rotationally fixed @4m & za=-535mm & 0 & 86694.0 &
47169.9 & -45.59 & N.A. \\

10 & Cont., 3 Supp. , Warp. Free & Point Load & Laterally and
rotationally fixed @4m & za=-535mm & 0 & 97401.0 &
50361 & -48.3 & N.A. \\
11 & Cont., 3 Supp. , Warp. Free & Point Load & Laterally and

rotationally fixed @4m & za=535mm & 0 & 97401.0 &
78625.7 & -19.28 & N.A. \\
12 & Cont., 3 Supp. , Warp. Free & Point Load & Laterally and rotationally

fixed @4m, Top flan… & za=-535mm & 0 & 111048.0 &
- & - & N.A. \\
\bottomrule
\end{tabular}

If you are an Excel person you can also export it to a csv format:

[30]: analysisTable.to_csv('LTBeamN_analysisTable.csv',index=False)

Feel free to play around with the code. Change, break things, and put them back together in a
way that makes sense for you. Whenever you get stuck always remember that, at least in these
situations, Google is your friend.

[ ]:
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